Novel Isoniazid-Carborane Hybrids Active in Vitro Against Mycobacterium tuberculosis

Pharmaceuticals (Basel). 2020 Dec 15;13(12):465. doi: 10.3390/ph13120465.

Abstract

Tuberculosis (TB) is a severe infectious disease with high mortality and morbidity. The emergence of drug-resistant TB has increased the challenge to eliminate this disease. Isoniazid (INH) remains the key and effective component in the therapeutic regimen recommended by World Health Organization (WHO). A series of isoniazid-carborane derivatives containing 1,2-dicarba-closo-dodecaborane, 1,7-dicarba-closo-dodecaborane, 1,12-dicarba-closo-dodecaborane, or 7,8-dicarba-nido-undecaborate anion were synthesized for the first time. The compounds were tested in vitro against the Mycobacterium tuberculosis (Mtb) H37Rv strain and its mutant (DkatG) defective in the synthesis of catalase-peroxidase (KatG). N'-((7,8-dicarba-nido-undecaboranyl)methylidene)isonicotinohydrazide (16) showed the highest activity against the wild-type Mtb strain. All hybrids could inhibit the growth of the ΔkatG mutant in lower concentrations than INH. N'-([(1,12-dicarba-closo-dodecaboran-1yl)ethyl)isonicotinohydrazide (25) exhibited more than 60-fold increase in activity against Mtb DkatG as compared to INH. This compound was also found to be noncytotoxic up to a concentration four times higher than the minimum inhibitory concentration 99% (MIC99) value.

Keywords: Mycobacterium tuberculosis; antitubercular activity; boron cluster; carborane; isoniazid.