[Expression of ubiquitin-specific protease 7 in lung tissue of preterm rats after hyperoxia exposure]

Zhongguo Dang Dai Er Ke Za Zhi. 2020 Dec;22(12):1331-1337. doi: 10.7499/j.issn.1008-8830.2007147.
[Article in Chinese]

Abstract

Objective: To study the expression and significance of ubiquitin-specific protease 7 (USP7) and the key factors of the Wnt signaling pathway in the lung tissue of preterm rats after hyperoxia exposure.

Methods: A total of 180 preterm neonatal Wistar rats were randomly divided into an air control group, an air intervention group, a hyperoxia control group, and a hyperoxia intervention group, with 45 rats in each group. Lung injury was induced by hyperoxia exposure in the hyperoxia groups. The preterm rats in the intervention groups were given intraperitoneal injection of the USP7 specific inhibitor P5091 (5 mg/kg) every day. The animals were sacrificed on days 3, 5, and 9 of the experiment to collect lung tissue specimens. Hematoxylin-eosin staining was used to observe the pathological changes of lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression levels of USP7 and the key factors of the Wnt signaling pathway β-catenin and α-smooth muscle actin (α-SMA) in lung tissue.

Results: The air groups had normal morphology and structure of lung tissue; on days 3 and 5, the hyperoxia control group showed obvious alveolar compression and disordered structure, with obvious inflammatory cells, erythrocyte diapedesis, and interstitial edema. On day 9, the hyperoxia control group showed alveolar structural disorder and obvious thickening of the alveolar septa. Compared with the hyperoxia control group at the corresponding time points, the hyperoxia intervention group had significantly alleviated disordered structure, inflammatory cell infiltration, and bleeding in lung tissue. At each time point, the hyperoxia groups had a significantly lower radial alveolar count (RAC) than the corresponding air groups (P < 0.05), and the hyperoxia intervention group had a significantly higher RAC than the hyperoxia control group (P < 0.05). On days 3, 5, and 9 of the experiment, the hyperoxia groups had significantly higher mRNA expression of USP7 and β-catenin and protein expression of USP7, β-catenin, and α-SMA than the corresponding air groups (P < 0.05). Compared with the hyperoxia control group, the hyperoxia intervention group had significant reductions in the mRNA expression of β-catenin and the protein expression of β-catenin and α-SMA (P < 0.05), while there were no significant differences in the mRNA and protein expression of USP7 between the hyperoxia intervention and hyperoxia control groups (P > 0.05). There were no significant differences in the mRNA expression of USP7 and β-catenin and the protein expression of USP7, β-catenin, and α-SMA between the air intervention and air control groups (P > 0.05).

Conclusions: Hyperoxia exposure can activate the Wnt/β-catenin signaling pathway, and USP7 may participate in hyperoxic lung injury through the Wnt/β-catenin signaling pathway. The USP7 specific inhibitor P5091 may accelerate the degradation of β-catenin by enhancing its ubiquitination, reduce lung epithelial-mesenchymal transition, and thus exert a certain protective effect against hyperoxic lung injury.

目的: 探讨泛素-特异性蛋白酶7(USP7)及Wnt信号通路中关键因子在高氧暴露早产大鼠肺组织中的表达及意义。

方法: 将180只新生早产Wistar大鼠随机均分成空气对照组、空气干预组、高氧对照组及高氧干预组,每组45只。干预组早产鼠每天腹腔注射USP7特异性抑制剂P5091(5 mg/kg),高氧组建立早产大鼠高氧暴露肺损伤动物模型。分别于实验过程第3、5、9天时处死动物收集早产鼠肺组织标本,通过苏木精-伊红染色病理切片观察肺组织病理变化;采用RT-PCR及Western blot技术检测肺组织中USP7及Wnt信号通路关键因子β-catenin、α-平滑肌肌动蛋白(α-SMA)的mRNA及其蛋白表达水平。

结果: 空气各组肺组织形态结构基本正常;高氧对照组3 d、5 d时可见肺泡明显压缩、结构紊乱,有明显炎症细胞、红细胞渗出及间质水肿改变;高氧对照组9 d时可见肺泡结构紊乱、肺泡间隔明显增厚;高氧干预组肺组织结构紊乱、炎症细胞浸润、红细胞渗出情况均较相应时间点的高氧对照组有所减轻;各时间点高氧各组放射状肺泡计数(RAC)均明显低于相应空气各组(P < 0.05),且高氧干预组RAC较高氧对照组明显升高(P < 0.05)。实验第3、5、9天时,高氧各组USP7、β-catenin mRNA及USP7、β-catenin、α-SMA蛋白表达均较相应空气各组增加(P < 0.05);高氧干预组β-catenin mRNA及β-catenin、α-SMA蛋白表达较高氧对照组减少(P < 0.05);高氧干预组USP7 mRNA及蛋白表达与高氧对照组相比差异无统计学意义(P > 0.05),空气干预组USP7、β-catenin mRNA及USP7、β-catenin、α-SMA蛋白表达与空气对照组相比差异无统计学意义(P > 0.05)。

结论: 高氧暴露可激活Wnt/β-catenin信号通路;USP7可能通过Wnt/β-catenin信号通路参与高氧肺损伤;USP7特异性抑制剂P5091可能通过加强β-catenin的泛素化来加速其降解,减少肺上皮-间质转化,从而对高氧肺损伤具有一定的保护作用。

MeSH terms

  • Animals
  • Animals, Newborn
  • Hyperoxia / physiopathology*
  • Lung / metabolism*
  • Lung / physiopathology
  • Random Allocation
  • Rats
  • Rats, Wistar
  • Thiophenes / pharmacology
  • Ubiquitin-Specific Peptidase 7 / metabolism*
  • Ubiquitin-Specific Proteases
  • Wnt Signaling Pathway

Substances

  • P5091
  • Thiophenes
  • Ubiquitin-Specific Peptidase 7
  • Ubiquitin-Specific Proteases
  • Usp7 protein, rat

Grants and funding

国家自然科学基金(81360105)