Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation

ACS Biomater Sci Eng. 2020 Oct 12;6(10):5771-5784. doi: 10.1021/acsbiomaterials.0c00844. Epub 2020 Sep 14.

Abstract

An important role of neural stem cell transplantation is repopulating neural and glial cells that actively promote repair following spinal cord injury (SCI). However, stem cell survival after transplantation is severely hampered by the inflammatory environment that arises after SCI. Biomaterials have a demonstrated history of managing post-SCI inflammation and can serve as a vehicle for stem cell delivery. In this study, we utilize macroporous polyethylene glycol (PEG) tubes, which were previously found to modulate the post-SCI microenvironment, to serve as a viable, soft substrate for injecting mouse embryonic day 14 (E14) spinal progenitors 2 weeks after tube implantation into a mouse SCI model. At 2 weeks after transplantation (4 weeks after injury), 4.3% of transplanted E14 spinal progenitors survived when transplanted directly into tubes compared to 0.7% when transplanted into the injury alone. Surviving E14 spinal progenitors exhibited a commitment to the neuronal lineage at 4 weeks post-injury, as assessed by both early and late phenotypic markers. Mice receiving tubes with E14 spinal progenitor transplantations had on average 21 ± 4 axons/mm2 regenerated compared to 8 ± 1 axons/mm2 for the injury only control, which corresponded with a significant increase in remyelination compared to the injury only control, while all conditions exhibited improved forelimb control 4 weeks after injury compared to the injury only. Collectively, we have demonstrated the feasibility of using PEG tubes to modify the implantation site and improve survival of transplanted E14 spinal progenitors.

Keywords: biomaterials; neural stem cells; spinal cord injury; tissue engineering.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Axons
  • Hydrogels
  • Mice
  • Neural Stem Cells* / transplantation
  • Spinal Cord Injuries* / therapy
  • Stem Cell Transplantation

Substances

  • Hydrogels