Device-to-Device Aided Cooperative Relaying Scheme Exploiting Spatial Modulation: An Interference Free Strategy

Sensors (Basel). 2020 Dec 9;20(24):7048. doi: 10.3390/s20247048.

Abstract

In this paper, a novel interference free dual-hop device-to-device (D2D) aided cooperative relaying strategy (CRS) based on spatial modulation (SM) (termed D2D-CRS-SM) is proposed. In D2D-CRS-SM, two cellular users (e.g., a near user (NU) and a relay-aided far user (FU)) and a pair of D2D transmitter (D1)-receivers (D2) are served in two time-slots. Two different scenarios are investigated considering information reception criteria at the NU. Irrespective of the scenarios, the base station (BS) exploits SM to map information bits into two sets: modulation bits and antenna index, in phase-1. In the first scenario, the BS maps FU information as the modulation bits and NU information as antenna index, whereas modulation bits correspond to NU information and the antenna index carries FU's information in scenario-2. The iterative-maximum ratio combining (i-MRC) technique is then used by NU and D1 to de-map their desired information bits. During phase-2, D1 also exploits SM to forward FU's information received from BS and its own information bits to the D2D receiver D2. Then, FU and D2 retrieve their desired information by using i-MRC. Due to exploiting SM in both phases, interference free information reception is possible at each receiving node without allocating any fixed transmit power. The performance of D2D-CRS-SM is studied in terms of bit-error rate and spectral efficiency considering M-ary phase shift keying and quadrature amplitude modulation. Finally, the efficiency of D2D-CRS-SM is demonstrated via the Monte Carlo simulation.

Keywords: bit error rate; device-to-device communication; interference free communications; spatial modulation; spectral efficiency.