Does the Muscle Action Duration Induce Different Regional Muscle Hypertrophy in Matched Resistance Training Protocols?

J Strength Cond Res. 2022 Sep 1;36(9):2371-2380. doi: 10.1519/JSC.0000000000003883. Epub 2020 Dec 9.

Abstract

Diniz, RCR, Tourino, FD, Lacerda, LT, Martins-Costa, HC, Lanza, MB, Lima, FV, and Chagas, MH. Does the muscle action duration induce different regional muscle hypertrophy in matched resistance training protocols? J Strength Cond Res 36(9): 2371-2380, 2022-The manipulation of the muscle action duration (MAD) can influence the instantaneous torque along the range of motion, which can lead to adaptations of regional muscle hypertrophy. The aim of this study was to compare the effects of matched resistance training (RT) on the knee extension machine with different MAD in the cross-sectional area (CSA) responses within the quadriceps femoris (QF) and its muscles. Forty-four subjects were allocated into a control and 3 experimental groups. For a period of 10 weeks, subjects in the experimental groups performed the training protocols that were different only by the MAD: group 5c1e (5s concentric action [CON] and 1s eccentric action [ECC]; group 3c3e (3s CON and 3s ECC) and group 1c5e (1s CON and 5s ECC). Magnetic resonance imaging was performed (before and after the intervention) to determine the relative change (%) in CSA of the QF muscles along proximal (30%), middle (50%), and distal regions (70% distal of the femur). The change in CSA of the rectus femoris at the middle region are greater in 5c1e (6.8 ± 6.5%) and 1c5e (7.4 ± 6.0%) groups than 3c3e (3.4 ± 6.6%) and control groups (0.2 ± 1.8%). In addition, vastus lateralis at the distal region (5c1e = 15.9 ± 11.8%; 1c5e = 14.4 ± 10.0%) presenting greater increases in change of CSA than the others vastus only 5c1e (vastus lateralis [VI] = 5.0 ± 4.7%; vastus medialis [VM] = 4.2 ± 3.2%) and 1c5e groups (VI = 4.7 ± 3.6%; VM = 3.4 ± 3.1%). In conclusion, this study showed that matched RT protocols with different MAD resulted in different region-specific muscle hypertrophic across the individual muscles of QF.

MeSH terms

  • Humans
  • Hypertrophy
  • Knee / physiology
  • Muscle, Skeletal / diagnostic imaging
  • Muscle, Skeletal / physiology
  • Quadriceps Muscle / diagnostic imaging
  • Quadriceps Muscle / physiology
  • Resistance Training* / methods
  • Torque