Finite Element Analysis of a Novel Aortic Valve Stent

Curr Health Sci J. 2020 Jul-Sep;46(3):290-296. doi: 10.12865/CHSJ.46.03.11. Epub 2020 Sep 30.

Abstract

Worldwide, one of the leading causes of death for patients with cardiovascular disease is aortic valve failure or insufficiency as a result of calcification and cardiovascular disease. The surgical treatment consists of repair or total replacement of the aortic valve. Artificial aortic valve implantation via a percutaneous or endovascular procedure is the minimally invasive alternative to open chest surgery, and the only option for high-risk or older patients. Due to the complex anatomical location between the left ventricle and the aorta, there are still engineering design optimization challenges which influence the long-term durability of the valve. In this study we developed a computer model and performed a numerical analysis of an original self-expanding stent for transcatheter aortic valve in order to optimize its design and materials. The study demonstrates the current valve design could be a good alternative to the existing commercially available valve devices.

Keywords: Aortic valve; finite elements; nitinol; stent.