Multiple metals exposure and arterial stiffness: A panel study in China

Chemosphere. 2021 Jan:263:128217. doi: 10.1016/j.chemosphere.2020.128217. Epub 2020 Sep 7.

Abstract

Chronic exposure to metals has been linked to arterial stiffness. However, the effects of exposure to multiple metals on arterial stiffness have rarely been studied. We aimed to investigate the associations of 23 urinary metals with arterial stiffness in a panel study of 127 Chinese adults with 3 repeated visits. Urinary metal measurements were conducted once a day for 4 consecutive days of each visit. Brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were measured in health examinations during each visit. Linear mixed models, least absolute shrinkage and selection operator (LASSO) penalized regression models, and generalized linear models were applied to investigate the associations between multiple metals and arterial stiffness parameters. The odds ratio (OR) for peripheral arterial disease (PAD) was examined using generalized estimating equations. After adjusting for potential covariates and other metals, we found ABI reductions were associated with one unit increase in 4-day average (lag 0-3 day) of ln-transformed urinary titanium (Ti) [β = -0.019 (SE = 0.010), P = 0.045], and cobalt (Co) [β = -0.012 (SE = 0.006), P = 0.048], whereas no significant associations were observed for baPWV at different lag days. Stratified analyses revealed that urinary Ti was inversely related to ABI among never-smokers or in the winter. In addition, the current day or 4-day average of ln-transformed urinary Ti was associated with an increased OR of 1.94 (95% CI: 1.28, 2.92) or 3.30 (95% CI: 1.64, 6.63) for PAD, respectively. Our study showed significant associations of exposure to Ti and Co with arterial stiffness. Particularly, Ti may increase the risk of PAD.

Keywords: Arterial stiffness; Panel study; Peripheral arterial disease; Urinary metals.

MeSH terms

  • Adult
  • Ankle Brachial Index
  • China
  • Cross-Sectional Studies
  • Humans
  • Odds Ratio
  • Pulse Wave Analysis
  • Risk Factors
  • Vascular Stiffness*