Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery

IEEE Trans Neural Netw Learn Syst. 2022 Mar;33(3):1037-1050. doi: 10.1109/TNNLS.2020.3038659. Epub 2022 Feb 28.

Abstract

The key to hyperspectral anomaly detection is to effectively distinguish anomalies from the background, especially in the case that background is complex and anomalies are weak. Hyperspectral imagery (HSI) as an image-spectrum merging cube data can be intrinsically represented as a third-order tensor that integrates spectral information and spatial information. In this article, a prior-based tensor approximation (PTA) is proposed for hyperspectral anomaly detection, in which HSI is decomposed into a background tensor and an anomaly tensor. In the background tensor, a low-rank prior is incorporated into spectral dimension by truncated nuclear norm regularization, and a piecewise-smooth prior on spatial dimension can be embedded by a linear total variation-norm regularization. For anomaly tensor, it is unfolded along spectral dimension coupled with spatial group sparse prior that can be represented by the l2,1 -norm regularization. In the designed method, all the priors are integrated into a unified convex framework, and the anomalies can be finally determined by the anomaly tensor. Experimental results validated on several real hyperspectral data sets demonstrate that the proposed algorithm outperforms some state-of-the-art anomaly detection methods.