Changes in food quality and microbial composition of Russian sturgeon (Acipenser gueldenstaedti) fillets treated with low temperature vacuum heating method during storage at 4 °C

Food Res Int. 2020 Dec;138(Pt A):109665. doi: 10.1016/j.foodres.2020.109665. Epub 2020 Sep 18.

Abstract

Russian sturgeon is a high-quality cultured fish and traditional heating methods may lead to deterioration of its food quality. This study aimed to evaluate the food quality and microbial composition of sturgeon fillets by low temperature vacuum heating (LTVH) and storage at 4 °C. The treatments varied in temperature (50, 60, and 70 °C) and duration (15 and 30 min); samples treated by traditional heating (100 °C, 15 min) methods were included as controls. We found that LTVH could reduce the values of lightness (L*), yellowness (b*), and pH and increase the values of redness (a*), chewiness, and hardness, to promote food quality. The biogenic amine content declined with the increase in heating temperature and time, the histamine of most concern was low at the end of storage, the values of LTVH70-30 and TC was 33.12 ± 1.25 and 30.39 ± 0.86 mg/kg. The total viable count (TVC) and biogenic amines showed the same trend, and the finial TVC values of LTVH60-30, LTVH70-15, LTVH70-30 and TC were 6.72 ± 0.17, 6.33 ± 0.18, 6.18 ± 0.08 and 5.93 ± 0.16 log CFU/g, which did not exceed the limit value (7 log CFU/g), indicating that the biosafety risk was reduced. According to the high-throughput sequencing results, the microbial composition of LTVH samples showed a lesser abundance pseudomonads than that found in the control. Thus, LTVH technology could be used as an alternative to traditional heating treatment.

Keywords: Food quality; High-throughput sequencing; Low temperature vacuum heating (LTVH); Microbial composition; Sturgeon fillets.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Food Quality*
  • Heating*
  • Russia
  • Temperature
  • Vacuum