Tunable Magnetic Hyperthermia Properties of Pristine and Mildly Reduced Graphene Oxide/Magnetite Nanocomposite Dispersions

Nanomaterials (Basel). 2020 Dec 4;10(12):2426. doi: 10.3390/nano10122426.

Abstract

We present a study on the magnetic hyperthermia properties of graphene oxide/magnetite (GO/MNP) nanocomposites to investigate their heat production behavior upon the modification of the oxidation degree of the carbonaceous host. Avoiding the harsh chemical conditions of the regular in situ co-precipitation-based routes, the oppositely charged MNPs and GO nanosheets were combined by the heterocoagulation process at pH ~ 5.5, which is a mild way to synthesize composite nanostructures at room temperature. Nanocomposites prepared at 1/5 and 1/10 GO/MNP mass ratios were reduced by NaBH4 and L-ascorbic acid (LAA) under acidic (pH ~ 3.5) and alkaline conditions (pH ~ 9.3). We demonstrate that the pH has a crucial effect on the LAA-assisted conversion of graphene oxide to reduced GO (rGO): alkaline reduction at higher GO loadings leads to doubled heat production of the composite. Spectrophotometry proved that neither the moderately acidic nor alkaline conditions promote the iron dissolution of the magnetic core. Although the treatment with NaBH4 also increased the hyperthermic efficiency of aqueous GO/MNP nanocomposite suspensions, it caused a drastic decline in their colloidal stability. However, considering the enhanced heat production and the slightly improved stability of the rGO/MNP samples, the reduction with LAA under alkaline condition is a more feasible way to improve the hyperthermic efficiency of magnetically modified graphene oxides.

Keywords: ascorbic acid; chemical reduction; graphene oxide; graphite oxide; heat production; heteroaggregation; magnetic hyperthermia; magnetite nanoparticles; nanocomposite dispersion.