Platelet-Derived GARP Induces Peripheral Regulatory T Cells-Potential Impact on T Cell Suppression in Patients with Melanoma-Associated Thrombocytosis

Cancers (Basel). 2020 Dec 5;12(12):3653. doi: 10.3390/cancers12123653.

Abstract

Platelets have been recently described as an important component of the innate and adaptive immunity through their interaction with immune cells. However, information on the platelet-T cell interaction in immune-mediated diseases remains limited. Glycoprotein A repetitions predominant (GARP) expressed on platelets and on activated regulatory T cells (Treg) is involved in the regulation of peripheral immune responses by modulating the bioavailability of transforming growth factor β (TGF-β). Soluble GARP (sGARP) exhibits strong regulatory and anti-inflammatory capacities both in vitro and in vivo, leading to the induction of peripheral Treg. Herein, we investigated the effect of platelet-derived GARP on the differentiation, phenotype, and function of T effector cells. CD4+CD25- T cells cocultured with platelets upregulated FoxP3, the master transcription factor for Treg, were anergic, and were strongly suppressive. These effects were reversed by using a blocking anti-GARP antibody, indicating a dependency on GARP. Importantly, melanoma patients in different stages of disease showed a significant upregulation of GARP on the platelet surface, correlating to a reduced responsiveness to immunotherapy. In conclusion, our data indicate that platelets induce peripheral Treg via GARP. These findings might contribute to diseases such as cancer-associated thrombocytosis, wherein poor prognosis and metastasis are associated with high counts of circulating platelets.

Keywords: GARP; Treg; melanoma; platelets; thrombocytosis.