Beyond Blocking: Engineering RNAi-Mediated Targeted Immune Checkpoint Nanoblocker Enables T-Cell-Independent Cancer Treatment

ACS Nano. 2020 Dec 22;14(12):17524-17534. doi: 10.1021/acsnano.0c08022. Epub 2020 Dec 8.

Abstract

The emergence of immune checkpoint blockade to activate host T cells to attack tumor cells has revolutionized the cancer treatment landscape over the past decade. However, sustained response has only been achieved in a small proportion of patients. This can be attributed to physiological barriers, such as T-cell heterogeneity and immunosuppressive tumor microenvironments. To this can be added obstacles intrinsic to traditional antibody-driven blockade methods, including the inability to inhibit checkpoint translocation from cytoplasm, systemic immune toxicity, and "bite back" effect on T cells. Using non-small cell lung cancer (NSCLC) as the cancer model, here we report an unconventional, yet powerful, tumor-targeted checkpoint blocking strategy by RNAi nanoengineering for T-cell-independent cancer therapy. Unlike antibodies, such nanoblocker silences both membranous and cytoplasmic PD-L1 in cancer cells, thus eliminating the binding step. Moreover, it is demonstrated that silencing of PD-L1 by the nanoblocker can cause the direct programmed cell death of NSCLC H460 cells, without the need of T-cell intervention. In vivo results from xenograft tumor models further demonstrate that tumor-homing peptide modification enables the nanoblocker to accumulate in the tumor tissue, downregulate the PD-L1 expression, and inhibit the tumor growth more efficiently than the nontargeted group. These findings may offer an effective means toward overcoming barriers against traditional checkpoint blockade and provide different insights into the molecular mechanism(s) underlying immunotherapy.

Keywords: NSCLC; RNAi engineering; cancer immunotherapy; immune checkpoint blockade; nanostructure.