Quantum Work Statistics with Initial Coherence

Entropy (Basel). 2020 Oct 27;22(11):1223. doi: 10.3390/e22111223.

Abstract

The two-point measurement scheme for computing the thermodynamic work performed on a system requires it to be initially in equilibrium. The Margenau-Hill scheme, among others, extends the previous approach to allow for a non-equilibrium initial state. We establish a quantitative comparison between both schemes in terms of the amount of coherence present in the initial state of the system, as quantified by the l1-coherence measure. We show that the difference between the two first moments of work, the variances of work, and the average entropy production obtained in both schemes can be cast in terms of such initial coherence. Moreover, we prove that the average entropy production can take negative values in the Margenau-Hill framework.

Keywords: quantum coherence; quantum thermodynamics; work distribution.