Nonadiabatic, Relativistic, and Leading-Order QED Corrections for Rovibrational Intervals of ^{4}He_{2}^{+} (X ^{2}Σ_{u}^{+})

Phys Rev Lett. 2020 Nov 20;125(21):213001. doi: 10.1103/PhysRevLett.125.213001.

Abstract

The rovibrational intervals of the ^{4}He_{2}^{+} molecular ion in its X ^{2}Σ_{u}^{+} ground electronic state are computed by including the nonadiabatic, relativistic, and leading-order quantum-electrodynamics corrections. Good agreement of theory and experiment is observed for the rotational excitation series of the vibrational ground state and the fundamental vibration. The lowest-energy rotational interval is computed to be 70.937 69(10) cm^{-1} in agreement with the most recently reported experimental value, 70.937 589(23)(60)_{sys} cm^{-1} [L. Semeria et al., Phys. Rev. Lett. 124, 213001 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.213001].