Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment

J Hazard Mater. 2021 May 15:410:124657. doi: 10.1016/j.jhazmat.2020.124657. Epub 2020 Nov 24.

Abstract

The problem of hazardous wastewater remediation is a complicated issue and a global challenge. Herein, a layered Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was prepared and incorporated with three carbon nanomaterials having different dimensionalities, carbon dots (C-dots, 0D), single-walled carbon nanotubes (1D), and reduced graphene oxide (2D), in an effort to create effective photocatalytic nanocomposites for chloramine-T removal from water. Microstructural analyses confirmed the formation of nanocomposites and revealed their chemistry and structure. Elemental mapping revealed a uniform distribution of elements throughout the nanocomposite matrix that was free of impurities. The spherical shape of the matrix particles (average diameter ~90 nm) and their conjugation with the carbon nanomaterials were confirmed. Nitrogen adsorption-desorption isotherms revealed that the nanocomposites were mesoporous but also contained macropores. The surface chemical compositions of the nanocomposites were investigated and showed a range of available binding energies. The kinetics of photocatalysis by the system were studied, and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) on the efficiency of chloramine-T degradation were also investigated. The nanocomposite loaded with 10% C-dots exhibited high UV-assisted photocatalytic activity for chloramine-T degradation (65% removal efficiency).

Keywords: C-dots; Chloramine-T; Nanocomposites; Photocatalysis; SWCNTs; Wastewater treatment; rGO.

Publication types

  • Research Support, Non-U.S. Gov't