Genetics and mapping of seed coat impermeability in soybean using inter-specific populations

Physiol Mol Biol Plants. 2020 Nov;26(11):2291-2299. doi: 10.1007/s12298-020-00906-y. Epub 2020 Nov 6.

Abstract

Seed coat impermeability (SCI) in soybean is associated with seed viability under storage and quality of processed products. Understanding genetics and identification of linked molecular markers would facilitate need-based utilization of seed coat impermeability. Two impermeable wild type (G. soja Sieb. and Zucc.) accessions viz. PI 424079 and PI 136620 were crossed with a permeable cultivated (G. max) variety JS335 to generate the mapping populations. Genetic analysis of the F1:2 and F2:3 seeds of the crosses indicated that SCI is controlled by a single gene/major QTL, and impermeability is dominant over permeability. Presence of seeds with intermediate permeability indicated role of some minor genes/QTLs. A set of 204 inter-specific recombinant inbred line (RILs) (F7) was used to map SCI with 207 SSR markers. Phenotyping through rapid imbibition approach (seed imbibition for 6 h), seven QTLs were mapped on chromosomes (Chrs.) 2, 5, 12, 13 and 16 in the seeds stored for 1-3 years, while through slow imbibition method (seed imbibition for 7 days), five QTLs were mapped on Chrs. 2, 9, 10 and 20. Phenotypic variation explained (PVE) by the QTLs ranged from 5.96 to 39.67%. Two major and stable QTLs viz., qScI-h2-1 and qScI-h2-2 that mapped in tandem on Chr.2 jointly explained 43.09-62.92% of the variations in impermeability. Seven minor QTLs identified here were novel and two (qScI-h5, and qScI-h16) were consistent. It is the first report of mapping impermeability using two imbibition approaches together in 200 plus inter-specific RILs in soybean. The study will pave the way for developing genotypes with restricted permeability, enhanced seed viability, and improved seeds quality.

Keywords: Inheritance; QTL; RIL; SSR markers; Seed coat impermeability; Soybean.