Seed-Adsorbate Interactions as the Key of Heterogeneous Butanol and Diethylene Glycol Nucleation on Ammonium Bisulfate and Tetramethylammonium Bromide

J Phys Chem A. 2020 Dec 17;124(50):10527-10539. doi: 10.1021/acs.jpca.0c08373. Epub 2020 Dec 2.

Abstract

Condensation particle counter (CPC) instruments are commonly used to detect atmospheric nanoparticles. They operate on the basis of condensing an organic working fluid on the nanoparticle seeds to grow the particles to a detectable size, and at the size of few nanometers, their efficiency depends on how well the working fluid interacts with the seeds under the measurement conditions. This study models the first steps of heterogeneous nucleation of two working fluids commonly used in CPCs (diethylene glycol (DEG) and n-butanol) onto two positively charged seeds, ammonium bisulfate and tetramethylammonium bromide. The nucleation process is modeled on a molecular level using a combination of systematic configurational sampling and density functional theory (DFT). We take into account the conformational flexibility of DEG and n-butanol and determine the key factors that can improve the efficiency of nanoparticle measurements by CPCs. The results show that hydrogen bonding between the seed and the working fluid molecules is central to the adsorption of the first DEG/n-butanol molecules onto the seeds. However, intermolecular hydrogen bonding between the adsorbed molecules can also enhance the nucleation process for the weakly adsorbing vapor molecules. Accordingly, the heterogeneous nucleation probability is higher for working fluid-nanoparticle combinations with a higher potential for hydrogen bonding; in this case, DEG and ammonium bisulfate. Moreover, conformational analysis and methodology evaluations indicate that the consideration of adsorbate conformers and step-wise addition of the vapor molecules to the seeds is not essential for qualitative modeling of heterogeneous nucleation systems, at least for systems where the adsorbate and seed chemical properties are clearly different. This is the first molecular-level modeling study reporting detailed chemical reasons for experimentally observed seed and working fluid preferences in CPCs and reproducing the experimental observations. Our presented approach can be likely used for predicting preferences in similar nucleating systems.