Real-Time Surgical Problem Detection and Instrument Tracking in Cataract Surgery

J Clin Med. 2020 Nov 30;9(12):3896. doi: 10.3390/jcm9123896.

Abstract

Surgical skill levels of young ophthalmologists tend to be instinctively judged by ophthalmologists in practice, and hence a stable evaluation is not always made for a single ophthalmologist. Although it has been said that standardizing skill levels presents difficulty as surgical methods vary greatly, approaches based on machine learning seem to be promising for this objective. In this study, we propose a method for displaying the information necessary to quantify the surgical techniques of cataract surgery in real-time. The proposed method consists of two steps. First, we use InceptionV3, an image classification network, to extract important surgical phases and to detect surgical problems. Next, one of the segmentation networks, scSE-FC-DenseNet, is used to detect the cornea and the tip of the surgical instrument and the incisional site in the continuous curvilinear capsulorrhexis, a particularly important phase in cataract surgery. The first and second steps are evaluated in terms of the area under curve (i.e., AUC) of the figure of the true positive rate versus (1-false positive rate) and the intersection over union (i.e., IoU) obtained by the ground truth and prediction associated with the region of interest. As a result, in the first step, the network was able to detect surgical problems with an AUC of 0.97. In the second step, the detection rate of the cornea was 99.7% when the IoU was 0.8 or more, and the detection rates of the tips of the forceps and the incisional site were 86.9% and 94.9% when the IoU was 0.1 or more, respectively. It was thus expected that the proposed method is one of the basic techniques to achieve the standardization of surgical skill levels.

Keywords: anomaly detection; cataract surgery; image classification; image segmentation; neural networks.