The Panopticon device: An integrated Paul-trap-hemispherical mirror system for quantum optics

Rev Sci Instrum. 2020 Nov 1;91(11):113201. doi: 10.1063/5.0020661.

Abstract

We present the design and construction of a new experimental apparatus for the trapping of single Ba+ ions in the center of curvature of an optical-quality hemispherical mirror. We describe the layout, fabrication, and integration of the full setup, consisting of a high-optical access monolithic "3D-printed" Paul trap, the hemispherical mirror, a diffraction-limited in-vacuum lens (NA = 0.7) for collection of atomic fluorescence, and a state-of-the art ultra-high vacuum vessel. This new apparatus enables the study of quantum electrodynamics effects such as strong inhibition and enhancement of spontaneous emission and achieves a collection efficiency of the emitted light in a single optical mode of 31%.