Thermal and Flame Retardant Properties of Phosphate-Functionalized Silica/Epoxy Nanocomposites

Materials (Basel). 2020 Nov 28;13(23):5418. doi: 10.3390/ma13235418.

Abstract

We report a flame retardant epoxy nanocomposite reinforced with 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO)-tethered SiO2 (DOPO-t-SiO2) hybrid nanoparticles (NPs). The DOPO-t-SiO2 NPs were successfully synthesized through surface treatment of SiO2 NPs with (3-glycidyloxypropyl)trimethoxysilane (GPTMS), followed by a click reaction between GPTMS on SiO2 and DOPO. The epoxy nanocomposites with DOPO-t-SiO2 NPs as multifunctional additive exhibited not only high flexural strength and fracture toughness but also excellent flame retardant properties and thermal stability, compared to those of pristine epoxy and epoxy nanocomposites with a single additive of SiO2 or DOPO, respectively. Our approach allows a facile, yet effective strategy to synthesize a functional hybrid additive for developing flame retardant nanocomposites.

Keywords: SiO2 nanoparticles; click chemistry; epoxy nanocomposite; flame retardant; phosphorus.