Splashing on Soft Elastic Substrates

Langmuir. 2020 Dec 15;36(49):15010-15017. doi: 10.1021/acs.langmuir.0c02500. Epub 2020 Dec 1.

Abstract

Drop impact onto soft substrates is important in applications such as bioprinting, spray coating, and aerosol drug delivery. Experiments are conducted to determine the effect of elasticity on the splash morphology, as defined by the splashing threshold, spine number, spreading factor, and retraction factor. PDMS silicone gel and gelatin hydrogel are used as the substrates because they have different wetting properties and a large range of elasticities. The splash threshold, as defined by the Weber number We, increases as the substrate elasticity decreases indicating that it is harder to splash on soft substrates. After impact, the drop spreads to a maximum diameter that decreases for soft substrates, irrespective of wetting properties, illustrating the role of substrate deformation in the energy balance during splashing. The number of spines that form at the leading edge of the drop depends upon the elasticity and the wetting properties of the liquid/substrate system. Following spreading, the drop retracts to an equilibrium diameter which does not show a strong correlation with any material properties. The reported results agree well with the existing literature for most cases and also provide new insights into gels with small elasticity.