Adaptive spatial planning of protected area network for conserving the Himalayan brown bear

Sci Total Environ. 2021 Feb 1:754:142416. doi: 10.1016/j.scitotenv.2020.142416. Epub 2020 Sep 21.

Abstract

Large mammals that occur in low densities, particularly in the high-altitude areas, are globally threatened due to fragile climatic and ecological envelopes. Among bear species, the Himalayan brown bear (Ursus arctos isabellinus) has a distribution that is restricted to Himalayan highlands with relatively small and fragmented populations. To date, very little scientific information on the Himalayan brown bear, which is vital for the conservation of the species and the management of its habitats, especially in protected areas of the landscape, is available. The present study aims to understand the effectiveness of existing Himalayan Protected Areas in terms of representativeness for the conservation of Himalayan brown bear (HBB), an umbrella species in high-altitude habitats of the Himalayan region. We used the ensemble approach of the species distribution model and then assessed biological connectivity to predict the current and future distribution and movement of HBB in climate change scenarios for the year 2050. Approximately 33 protected areas (PAs) currently possess suitable habitats. Our model suggests a massive decline of approximately 73.38% and 72.87% under 4.5 and 8.5 representative concentration pathway (RCP) respectively in the year 2050 compared with the current distribution. The predicted change in suitability will result in loss of habitats from thirteen PAs; eight will become completely uninhabitable by the year 2050, followed by loss of connectivity in the majority of PAs. Habitat configuration analysis suggested a 40% decline in the number of suitable patches, a reduction in large habitat patches (up to 50%) and aggregation of suitable areas (9%) by 2050, indicating fragmentation. The predicted change in geographic isotherm will result in loss of habitats from thirteen PAs, eight of them will become completely inhabitable. Hence, these PAs may lose their effectiveness and representativeness in achieving the very objective of their existence or conservation goals. Therefore, we recommend adaptive spatial planning for protecting suitable habitats distributed outside the PA for climate change adaptation.

Keywords: Adaptive spatial planning; Corridors; Ensemble model; Habitat loss; Himalayan brown bear; India.

MeSH terms

  • Acclimatization
  • Animals
  • Climate Change
  • Conservation of Natural Resources
  • Ecosystem
  • Goals
  • Movement
  • Ursidae*