Norbornene-Functionalized Plant Oils for Biobased Thermoset Films and Binders of Silicon-Graphite Composite Electrodes

ACS Omega. 2020 Nov 9;5(46):29678-29687. doi: 10.1021/acsomega.0c02645. eCollection 2020 Nov 24.

Abstract

We herein report the functionalization of plant oil with norbornene (NB) and subsequent polymerization to prepare biobased thermoset films and biobased binders for silicon/mesocarbon microbead (MCMB) composite electrodes for use in lithium-ion batteries. A series of NB-functionalized plant oils were prepared as biobased thermoset films via ring-opening metathesis polymerization (ROMP) in the presence of a second-generation Grubbs catalyst with tunable thermomechanical properties. Increasing the catalyst loading and cross-linking agent increased cross-link density, storage modulus (E'), and glass transition temperature (T g), while the numbers of unreacted or oligomeric components in the films were reduced. High number of NB rings per triglyceride in the plant oil encouraged monomer incorporation to form a polymer network, therefore accounting for the high T g and E' values. Furthermore, the NB-functionalized plant oil and 2,5-norbornadiene (NBD) were copolymerized as bioderived binders for silicone/MCMB composite electrodes of lithium-ion batteries via ROMP during electrode preparation. Cell performance investigation showed that the silicone/MCMB composite electrode bearing the NBD-cross-linked NB-functionalized plant oil binder exhibited a higher C-rate and cycle-life performance than that using a conventional poly(vinylidene fluoride) (PVDF) binder. Finally, the electrode based on the bioderived binder exhibited a high specific charge capacity of 620 mA h g-1 at 0.5 C.