Deciphering of antibiotic resistance genes (ARGs) and potential abiotic indicators for the emergence of ARGs in an interconnected lake-river-reservoir system

J Hazard Mater. 2021 May 15:410:124552. doi: 10.1016/j.jhazmat.2020.124552. Epub 2020 Nov 12.

Abstract

This study aimed to decipher the patterns of antibiotic resistance genes (ARGs) and linkages of key abiotic indicators with ARGs in an interconnected lake-river-reservoir system. The results showed that seasonal variations in the relative abundance of ARGs and mobile gene elements (MGEs) were significant (KW, p < 0.05). ARGs representative of fecal pollution and natural environment were primarily distributed in the river and reservoir, respectively. The lake, river, and reservoir shared 54.5% of ARGs subtypes, most of which are multidrug resistance genes encoding for efflux pumps. Network results showed that ARGs conferring resistance to aminoglycoside frequently co-occurred with class 1 integrons and Limnohabitans. The resistance risks were low and associated with non-corresponding ARGs, and the highest resistance risk was caused by enrofloxacin in the Dianshan Lake. Fluorescence indices derived from two methods exhibited consistent positive correlations with abundance of individual genes (i.e. aada1 and aadA2-03) as well as total aminoglycoside resistance genes (Pearson, p < 0.05). Moreover, ARGs indicators of human and animal fecal pollution showed linkages with humic-like and fulvic-like indices (Pearson, p < 0.05). The results provide novel insights into the roles of abiotic factors on indicating dynamics of ARGs in aquatic environment impacted by anthropogenic activities.

Keywords: Antibiotics; Biological contaminants; Fluorescence indices; Freshwater ecosystem; Risk.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Drug Resistance, Microbial / genetics
  • Genes, Bacterial
  • Humans
  • Lakes*
  • Rivers*

Substances

  • Anti-Bacterial Agents