Super-resolution ophthalmoscopy: Virtually structured detection for resolution improvement in retinal imaging

Exp Biol Med (Maywood). 2021 Feb;246(3):249-259. doi: 10.1177/1535370220970533. Epub 2020 Nov 27.

Abstract

Quantitative retinal imaging is essential for advanced study and clinical management of eye diseases. However, spatial resolution of retinal imaging has been limited due to available numerical aperture and optical aberration of the ocular optics. Structured illumination microscopy has been established to break the diffraction-limit resolution in conventional light microscopy. However, practical implementation of structured illumination microscopy for in vivo ophthalmoscopy of the retina is challenging due to inevitable eye movements that can produce phase artifacts. Recently, we have demonstrated the feasibility of using virtually structured detection as one alternative to structured illumination microscopy for super-resolution imaging. By providing the flexibility of digital compensation of eye movements, the virtually structured detection provides a feasible, phase-artifact-free strategy to achieve super-resolution ophthalmoscopy. In this article, we summarize the technical rationale of virtually structured detection, and its implementations for super-resolution imaging of freshly isolated retinas, intact animals, and awake human subjects.

Keywords: Retina; modulation transfer function; optical transfer function; photoreceptor; scanning laser ophthalmoscopy; super-resolution; virtually structured detection.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Eye Diseases / diagnosis*
  • Eye Diseases / diagnostic imaging
  • Humans
  • Microscopy / methods
  • Ocular Physiological Phenomena
  • Ophthalmoscopy / methods*
  • Retina / diagnostic imaging*