"Excess" electrons in LuGe

Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6457-6461. doi: 10.1002/anie.202014284. Epub 2021 Jan 26.

Abstract

The monogermanide LuGe is obtained via high-pressure high-temperature synthesis (5-15 GPa, 1023-1423 K). The crystal structure is solved from single-crystal X-ray diffraction data (structure type FeB, space group Pnma, a=7.660(2) Å, b=3.875(1) Å, and c=5.715(2) Å, RF =0.036 for 206 symmetry independent reflections). The analysis of chemical bonding applying quantum-chemical techniques in position space was performed. It revealed-beside the expected 2c-Ge-Ge bonds in the germanium polyanion-rather unexpected four-atomic bonds between lutetium atoms indicating the formation of a polycation by the excess electrons in the system Lu3+ (2b)Ge2- ×1 e- . Despite the reduced VEC of 3.5, lutetium monogermanide is following the extended 8-N rule with the trend to form lutetium-lutetium bonds utilizing the electrons left after satisfying the bonding needs in the anionic Ge-Ge zigzag chain.

Keywords: chemical bonding; germanium; high-pressure synthesis; intermetallic compound; lutetium.

Grants and funding