Phototriggered Guest Release from a Nonporous Organic Crystal: Remarkable Single-Crystal-to-Single-Crystal Transformation of a Binary Cocrystal Solvate to a Ternary Cocrystal

J Am Chem Soc. 2020 Dec 9;142(49):20772-20777. doi: 10.1021/jacs.0c09732. Epub 2020 Nov 25.

Abstract

The development of organic solids for applications in materials science requires a fundamental understanding of how close packing of molecules can affect structure and function. We report here nonporous organic crystals that release entrapped guest molecules upon application of UV light. We show components of binary cocrystal solvates to undergo an intermolecular photoreaction to generate ternary cocrystals that results in release of entrapped solvent molecules. The phototriggered guest release occurs in a single-crystal-to-single-crystal transformation that is in the absence pores and channels in the solid. The cocrystals are composed of a tetratopic hydrogen-bond-acceptor molecule synthesized in the solid state. The UV-light results in [2 + 2] photodimerization of an isocoumarin to generate a ternary cocrystal with cyclobutane molecules that support guest release.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.