Mapping replication timing domains genome wide in single mammalian cells with single-cell DNA replication sequencing

Nat Protoc. 2020 Dec;15(12):4058-4100. doi: 10.1038/s41596-020-0378-5. Epub 2020 Nov 23.

Abstract

Replication timing (RT) domains are stable units of chromosome structure that are regulated in the context of development and disease. Conventional genome-wide RT mapping methods require many S-phase cells for either the effective enrichment of replicating DNA through bromodeoxyuridine (BrdU) immunoprecipitation or the determination of copy-number differences during S-phase, which precludes their application to non-abundant cell types and single cells. Here, we provide a simple, cost-effective, and robust protocol for single-cell DNA replication sequencing (scRepli-seq). The scRepli-seq methodology relies on whole-genome amplification (WGA) of genomic DNA (gDNA) from single S-phase cells and next-generation sequencing (NGS)-based determination of copy-number differences that arise between replicated and unreplicated DNA. Haplotype-resolved scRepli-seq, which distinguishes pairs of homologous chromosomes within a single cell, is feasible by using single-nucleotide polymorphism (SNP)/indel information. We also provide computational pipelines for quality control, normalization, and binarization of the scRepli-seq data. The experimental portion of this protocol (before sequencing) takes 3 d.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • DNA Replication*
  • Genomics / methods*
  • Humans
  • S Phase / genetics
  • Sequence Analysis, DNA / methods*
  • Single-Cell Analysis / methods*