Modification of Mechanical Properties of Aluminum Alloy Rods via Friction-Extrusion Method

Materials (Basel). 2020 Nov 19;13(22):5224. doi: 10.3390/ma13225224.

Abstract

The elaboration of a modified friction-extrusion method aimed at obtaining 2017A aluminum rods of gradient microstructure is described. This was achieved by cutting spiral grooves on the face of the stamp used for alloy extrusion. The experiments were carried out at a constant material feed (~10 mm/min) and a range of tool rotation speeds (80 to 315 rpm). The microstructure observations were carried out using light microscopy (LM) and both scanning and transmission electron microscopy (SEM and TEM). The mechanical properties were assessed through hardness measurements and static tensile tests. The performed investigations show that material simultaneous radial and longitudinal flow, enforced by friction of the rotating tool head and extrusion, results in the formation of two zones of very different microstructures. At the perpendicular section, the outer zone stands out from the core due to circumferential elongation of strings of particles, while in the inner zone the particles are arranged in a more uniform way. Simultaneously, the grain size of the outer zone is refined by two to four times as compared with the inner one. The transfer from the outer zone to the core area is of gradient type. The hardness of the outer zone was found to be ~10% to ~20% higher than that of the core.

Keywords: aluminum alloy; friction extrusion; gradient microstructure; wire.