Revisiting the Relationships Between Genomic G + C Content, RNA Secondary Structures, and Optimal Growth Temperature

J Mol Evol. 2021 Apr;89(3):165-171. doi: 10.1007/s00239-020-09974-w. Epub 2020 Nov 20.

Abstract

Over twenty years ago Galtier and Lobry published a manuscript entitled "Relationships between Genomic G + C Content, RNA Secondary Structure, and Optimal Growth Temperature" in the Journal of Molecular Evolution that showcased the lack of a relationship between genomic G + C content and optimal growth temperature (OGT) in a set of about 200 prokaryotes. Galtier and Lobry also assessed the relationship between RNA secondary structures (rRNA stems, tRNAs) and OGT, and in this case a clear relationship emerged. Increasing structured RNA G + C content (particularly in regions that are double-stranded) correlates with increased OGT. Both of these fundamental relationships have withstood test of many additional sequences and spawned a variety of different applications that include prediction of OGT from rRNA sequence and computational ncRNA identification approaches. In this work, I present the motivation behind Galtier and Lobry's original paper and the larger questions addressed by the work, how these questions have evolved over the last two decades, and the impact of Galtier and Lobry's manuscript in fields beyond these questions.

Keywords: Genome composition; Thermoadaptation; rRNA.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Genome*
  • Genomics
  • Nucleic Acid Conformation
  • Prokaryotic Cells
  • RNA* / genetics
  • Temperature

Substances

  • RNA