Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe

Adv Mater. 2021 Jan;33(1):e2005612. doi: 10.1002/adma.202005612. Epub 2020 Nov 20.

Abstract

Phase transition in thermoelectric (TE) material is a double-edged sword-it is undesired for device operation in applications, but the fluctuations near an electronic instability are favorable. Here, Sb doping is used to elicit a spontaneous composition fluctuation showing uphill diffusion in GeTe that is otherwise suspended by diffusionless athermal cubic-to-rhombohedral phase transition at around 700 K. The interplay between these two phase transitions yields exquisite composition fluctuations and a coexistence of cubic and rhombohedral phases in favor of exceptional figures-of-merit zT. Specifically, alloying GeTe by Sb2 Te3 significantly suppresses the thermal conductivity while retaining eligible carrier concentration over a wide composition range, resulting in high zT values of >2.6. These results not only attest to the efficacy of using phase transition in manipulating the microstructures of GeTe-based materials but also open up a new thermodynamic route to develop higher performance TE materials in general.

Keywords: displacive phase transformation; germanium telluride; thermoelectric figure of merit.