Efficacy of Antimicrobial and Larvicidal Activities of Green Synthesized Silver Nanoparticles Using Leaf Extract of Plumbago auriculata Lam

Plants (Basel). 2020 Nov 14;9(11):1577. doi: 10.3390/plants9111577.

Abstract

This work reports the synthesis of silver nanoparticles (AgNPs) using aqueous extract of Plumbago auriculata, and evaluates their antibacterial and larvicidal activities. The synthesized silver nanoparticles were characterized by various spectroscopy techniques, such as FTIR, XRD, TEM, EDX, Zeta potential, and DLS. The synthesized AgNPs exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria, such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae. Furthermore, synthesized nanoparticles inhibited the fourth instars larvae of Aedes aegypti and Culex quinquefasciatus at the concentration of 45.1 and 41.1 µg/mL respectively. Results of dose-dependent studies showed that synthesized nanoparticles were also effective at low concentrations. Molecular docking studies performed with the salivary protein and odorant-binding protein of Aedes aegypti and Culex quinquefasciatus demonstrated that the naphthoquinone compound plumbagin exhibited reliable binding affinity towards the two enzymes. The findings thus reveal that the plant extract and its nanoparticles can be a better alternative to available chemicals to control mosquitos.

Keywords: Plumbago auriculata; TEM; XRD; antibacterial; larvicidal activity; mosquito repellant; silver nanoparticles.