Evaluation of the hypoglycemic effect of exendin-4's new oral self-nanoemulsifying system in rats

Eur J Pharm Sci. 2021 Mar 1:158:105644. doi: 10.1016/j.ejps.2020.105644. Epub 2020 Nov 13.

Abstract

The objective of this study is to develop a new self-nanoemulsifying system containing exendin-4 with or without enzyme inhibitor chymostatin and to evaluate the effects of oral administration of exendin-4 and exendin-4/chymostatin loaded self nanoemulsifying system on plasma exendin-4, plasma insulin, blood glucose levels and to compare with the oral and subcutaneous administration of exendin-4 in non-diabetic and streptozotocin-induced type 2 diabetic rats. Exendin-4 and exendin-4/chymostatin loaded self-nanoemulsifying system containing ethyl oleate as the oil phase, Cremophor EL®/Labrasol® as the surfactants and propylene glycol as the co-solvent were prepared. The mean droplet size, polydispersity index, zeta potential and viscosity of exendin-4 loaded self-nanoemulsifying system were found as 24.28 ± 0.43 nm, 0.17 ± 0.01, -1.28 ± 3.61 mV, 79.60 ± 3.30 m.Pas, respectively. The mean droplet size, polydispersity index, zeta potential and viscosity of exendin-4/chymostatin loaded self-nanoemulsifying system were found as 20.25 ± 0.35 nm, 0.11 ± 0.02, -1.85 ± 2.49 mV, 100.02 ± 7.65 m.Pas, respectively according to our previous study. In the present study, we focused on long-term physical stability studies, pharmacokinetic studies and pharmacodynamic studies of prepared self-nanoemulsifying systems. According to the long- term physical stability data, exendin-4 and exendin-4/chymostatin loaded self-nanoemulsifying systems were found stable both at 5°C ± 3°C and at 25°C ± 60% RH for 12 months. Exendin-4 and exendin-4/chymostatin loaded self-nanoemulsifying systems increased AUC and Cmax values in non-diabetic rats compared to the oral exendin-4 solution. In diabetic rats, exendin-4/chymostatin loaded self nanoemulsifying systems increased Cmax values compared to the exendin-4 solution. Exendin-4/chymostatin loaded self-nanoemulsifying system decreased inter-subject variability compared to commercial Byetta®. At 30th minute after administration of exendin-4 loaded self-nanoemulsifying system, exendin-4/chymostatin loaded self nanoemulsifying system and Byetta®, blood glucose levels decreased to 23%, 25%, 29%, respectively. It has been shown that pharmacodynamic response is close to Byetta® with exendin-4/chymostatin self-nanoemulsifying system oral administration. In conclusion, a self nanoemulsifying system was found to be a suitable carrier system, and the combination with enzyme inhibitor chymostatin is thought to be promising for oral delivery of exendin-4.

Keywords: Exendin-4; Oral peptide delivery; Pharmacodynamics; Pharmacokinetics; Self-nanoemulsifying system.

MeSH terms

  • Administration, Oral
  • Animals
  • Biological Availability
  • Diabetes Mellitus, Experimental* / drug therapy
  • Drug Delivery Systems
  • Emulsions
  • Exenatide
  • Hypoglycemic Agents
  • Nanoparticles*
  • Particle Size
  • Rats
  • Solubility
  • Surface-Active Agents

Substances

  • Emulsions
  • Hypoglycemic Agents
  • Surface-Active Agents
  • Exenatide