Post translational modifications in tuberculosis: ubiquitination paradox

Autophagy. 2021 Mar;17(3):814-817. doi: 10.1080/15548627.2020.1850009. Epub 2020 Nov 24.

Abstract

Innate immune signaling and xenophagy are crucial innate defense strategies exploited by the host to counteract intracellular pathogens with ubiquitination as a critical regulator of these processes. These pathogens, including Mycobacterium tuberculosis (M. tb), co-opt the host ubiquitin machinery by utilizing secreted or cell surface effectors to dampen innate host defenses. Inversely, the host utilizes ubiquitin ligase-mediated ubiquitination of intracellular pathogens and recruits autophagy receptors to induce xenophagy. In the current article, we discuss the co-option of the ubiquitin pathway by the M. tb virulence effectors.Abbreviations: ANAPC2: anaphase promoting complex subunit 2; IL: interleukin; Lys: lysine (K); MAPK: mitogen-activated protein kinase; MAP3K7/TAK1; mitogen-activated protein kinase kinase kinase 7; M. tb: Mycobacterium tuberculosis; NFKB/NF-κB: nuclear factor kappa B subunit; PtpA: protein tyrosine phosphatase; SQSTM1/p62: sequestosome 1; V-ATPase: vacuolar-type H+-ATPase; UBA: a eukaryotic-like ubiquitin-associated domain.

Keywords: Autophagy; Mycobacterium tuberculosis; ubiquitination; virulence effectors; xenophagy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Autophagy / physiology*
  • Humans
  • Macrophages / metabolism*
  • Mycobacterium tuberculosis / metabolism
  • Protein Processing, Post-Translational / physiology*
  • Tuberculosis / metabolism*
  • Ubiquitination / physiology