Ionic strength effect on regulating the synthetic assembly of polyoxometalate clusters with slow magnetic relaxation behavior

Dalton Trans. 2020 Dec 8;49(46):16954-16961. doi: 10.1039/d0dt02409k.

Abstract

Three novel polyoxometalate (POM) clusters of K10Na10[Dy3(H2O)6Ni(H2O)(W3O11)(B-α-SbW9O33)3]·(H2O)45 (1), (NH4)5K4Na8[Dy3(H2O)6SbV(H2O)(W3O11)(B-α-SbW9O33)3]·(H2O)50 (2), and (NH4)9Na[Ni2(H2O)6(WO2)2(B-β-SbW9O33)2]·(H2O)24 (3) were successfully obtained using the same precursor under different ionic strength conditions. Structural analysis showed that compounds 1-3 possess discrepant structural characteristics in 1 M KCl, 1 M NH4Cl, and saturated NH4Cl, respectively. Among them, 2 is the first reported lanthanide cluster including both Sb3+ and Sb5+ in POM derivatives. Furthermore, the analysis of ac magnetic data proved that 1 and 2 embodied dramatic field-induced slow magnetic relaxation, and the effective barrier of 2 was estimated as Ueff/KB = 21.10 K based on the Orbach process. It was found that the structure and magnetic properties of POM materials can be regulated using an effective and satisfactory ionic strength-controlled strategy.