High-Performance Colorimetric Humidity Sensors Based on Konjac Glucomannan

ACS Appl Mater Interfaces. 2020 Dec 2;12(48):54104-54116. doi: 10.1021/acsami.0c16495. Epub 2020 Nov 13.

Abstract

High-humidity conditions (85-100% relative humidity (RH)) have very diverse effects on many aspects of people's daily lives. Despite remarkable progress in the development of structural coloration-based humidity sensors, how to significantly improve the sensitivity and visual humidity resolution of these humidity sensors under a high-humidity environment remains a great challenge. In this study, high-performance colorimetric humidity sensors based on environment-friendly konjac glucomannan (KGM) via thin-film interference are developed using a simple, affordable, and scalable preparation method. An effective strategy is demonstrated for substantially improving the sensor sensitivity and visual humidity resolution under a high-humidity environment via synergistic integration of multiorder interference peaks, sensor array technology, and superior water-absorbing polymer. The KGM full-range humidity sensors exhibit fast and dynamic response toward the humidity change without power consumption, and they also show high sensitivity and selectivity, little hysteresis, and excellent stability against high-humidity conditions. The KGM humidity sensors display extraordinary red shift of the reflection peak (e.g., 385 nm) and the visual humidity resolution as high as 1.5% RH in the visible range from 85 to 100% RH, which represent the largest spectra shift and highest visual humidity resolution, respectively, for structural coloration-based humidity sensors in high-humidity conditions.

Keywords: colorimetric sensor; humidity sensor; konjac glucomannan; structural color; thin-film interference.