Diagnosing phase correlations in the joint spectrum of parametric downconversion using multi-photon emission

Opt Express. 2020 Nov 9;28(23):34246-34254. doi: 10.1364/OE.401258.

Abstract

The development of new quantum light sources requires robust and convenient methods of characterizing their joint spectral properties. Measuring the joint spectral intensity between a photon pair ignores any correlations in spectral phase which may be responsible for degrading the quality of quantum interference. A fully phase-sensitive characterization tends to require significantly more experimental complexity. Here, we investigate the sensitivity of the frequency-resolved double-pair emission to spectral phase correlations, in particular to the presence of a simple form of correlated phase which can be generated by a chirped pump laser pulse. We observe interference fringes in the four photon coincidences which depend on the frequencies of all four photons, with a period which depends on the strength of their correlation. We also show that phase correlations in the JSA induce spectral intensity correlations between two signal photons, even when the corresponding idler photons are not detected, and link this correlation pattern to the purity of a single signal photon. These effects will be useful in assessing new photon-pair sources for quantum technologies, especially since we require little additional complexity compared to a joint spectral intensity measurement - essentially just the ability to detect at least two photons in each output port.