A Systems Bioinformatics Approach to Interconnect Biological Pathways

Methods Mol Biol. 2021:2189:231-249. doi: 10.1007/978-1-0716-0822-7_17.

Abstract

Signal transduction tasks as well as other complex biological processes involve many different changes in groups of genes, proteins, and metabolites linked together in chains or networks called pathways or networks of pathways. In a classical functional analysis, the biomolecules found to play a role in the biological status under investigation are members of a group of pathways that are not necessarily interconnected. However, interconnectivity is a critical factor for functionality. Thus, it is necessary to be able to construct "connected functional stories" to understand better the complex biological processes. PathwayConnector is a recently introduced web-tool that facilitates the construction of complementary pathway-to-pathway networks, bringing to our attention missing pathways that are crucial links towards the understanding of the molecular mechanisms related to complex diseases. Current version of the web-tool draws from an expanded pathway reference network and provides information deriving from 19 different organisms and 2 different pathway repositories: the KEGG and the REACTOME. Novel genes, proteins, and pathways derived from any experimental/computational method either in large-scale (omics) or even in smaller scale (specific laboratory experiments) can potentially be projected and analyzed through PathwayConnector. This chapter describes in details the pipeline and methodologies used for the latest updated version of PathwayConnector, providing an easy way for rapidly relating human or other organism's pathways together. Recent studies have shown that pathway networks and subnetworks, generated by PathwayConnector, are an integral part towards the individualization of disease, leading to a more precise and personalized management of the treatment.

Keywords: Clusters of pathways; Pathway analysis; Pathway networks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computational Biology*
  • Models, Biological*
  • Signal Transduction*
  • Software*