Pyrrole-Modified Porphyrins Containing Eight-Membered Heterocycles Using a Reversal of the "Breaking and Mending" Strategy

J Org Chem. 2020 Dec 4;85(23):15273-15286. doi: 10.1021/acs.joc.0c02108. Epub 2020 Nov 11.

Abstract

The conversion of meso-aryl-porphyrins/chlorins to porphyrinoids containing nonpyrrolic heterocycles (so-called pyrrole-modified porphyrins, PMPs) along an approach we dubbed "the breaking and mending of porphyrins" is well known. However, examples are limited to the synthesis of PMPs containing up to six-membered heterocycles; the syntheses of larger rings failed. We report here hitherto unavailable eight-membered chlorin-type PMPs using an inverted "mending and breaking" approach. All examples are based on the addition of N,N'-dimethylurea derivatives to a meso-phenyl-β,β'-dioxoporphyrin, followed by oxidative cleavage of the intermediate diol adduct. We correlate the extremely nonplanar solid-state structures of three crystallographically characterized PMPs containing an eight-membered ring with their solution-state optical properties. The first examples of bis-modified, bacteriochlorin-type PMPs containing either two eight-membered rings or an eight-membered ring and an imidazolone ring are also detailed. Using other N,N'-nucleophiles failed to either generate chlorins containing a β,β'-dihydroxypyrroline, a prerequisite for the "breaking step," or the cleavage of those substrates that did generate a diol underwent subsequent reactions that thwarted the generation of the desired PMPs. This contribution adds novel PMPs containing eight-membered rings, highlights the effects these derivatizations have on the macrocycle conformation, and how that affects their optical properties.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.