Integrative genomic phylogeography reveals signs of mitonuclear incompatibility in a natural hybrid goby population

Evolution. 2021 Jan;75(1):176-194. doi: 10.1111/evo.14120. Epub 2020 Nov 30.

Abstract

Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747-Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA-sequencing, RAD-sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA-sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO-lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage-specific selection on mitochondria-related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.

Keywords: Dobzhansky-Muller incompatibility; hybridization; microRNA; mitonuclear interactions; oxidative phosphorylation; secondary contact.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution*
  • Genome, Mitochondrial*
  • Hybridization, Genetic*
  • Japan
  • Perciformes / genetics*
  • Phylogeography
  • Sequence Analysis, RNA

Associated data

  • Dryad/10.5061/dryad.5qfttdz3m