Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease

Front Microbiol. 2020 Oct 9:11:585404. doi: 10.3389/fmicb.2020.585404. eCollection 2020.

Abstract

Major losses of crop yield and quality caused by soil-borne plant diseases have long threatened the ecology and economy of agriculture and forestry. Biological control using beneficial microorganisms has become more popular for management of soil-borne pathogens as an environmentally friendly method for protecting plants. Two major barriers limiting the disease-suppressive functions of biocontrol microbes are inadequate colonization of hosts and inefficient inhibition of soil-borne pathogen growth, due to biotic and abiotic factors acting in complex rhizosphere environments. Use of a consortium of microbial strains with disease inhibitory activity may improve the biocontrol efficacy of the disease-inhibiting microbes. The mechanisms of biological control are not fully understood. In this review, we focus on bacterial and fungal biocontrol agents to summarize the current state of the use of single strain and multi-strain biological control consortia in the management of soil-borne diseases. We discuss potential mechanisms used by microbial components to improve the disease suppressing efficacy. We emphasize the interaction-related factors to be considered when constructing multiple-strain biological control consortia and propose a workflow for assembling them by applying a reductionist synthetic community approach.

Keywords: biological control agents; consortia; microbial interaction; microbiome and community; soil-borne disease.

Publication types

  • Review