Cost-Effective Synthesis of Efficient CoWO4/Ni Nanocomposite Electrode Material for Supercapacitor Applications

Nanomaterials (Basel). 2020 Nov 4;10(11):2195. doi: 10.3390/nano10112195.

Abstract

In the present study, the synthesis of CoWO4 (CWO)-Ni nanocomposites was conducted using a wet chemical method. The crystalline phases and morphologies of the Ni nanoparticles, CWO, and CWO-Ni composites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDAX). The electrochemical properties of CWO and CWO-Ni composite electrode materials were assessed by cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) tests using KOH as a supporting electrolyte. Among the CWO-Ni composites containing different amounts of Ni1, Ni2, and Ni3, CWO-Ni3 exhibited the highest specific capacitance of 271 F g-1 at 1 A g-1, which was greater than that of bare CWO (128 F g-1). Moreover, the CWO-Ni3 composite electrode material displayed excellent reversible cyclic stability and maintained 86.4% of its initial capacitance after 1500 discharge cycles. The results obtained herein demonstrate that the prepared CWO-Ni3 nanocomposite is a promising electrode candidate for supercapacitor applications.

Keywords: CWO–Ni composite; charge–discharge studies; cobalt tungstate; supercapacitors; wet chemical method.