Construction of Natural Loofah/Poly(vinylidene fluoride) Core-Shell Electrospun Nanofibers via a Controllable Janus Nozzle for Switchable Oil-Water Separation

ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51917-51926. doi: 10.1021/acsami.0c12912. Epub 2020 Nov 4.

Abstract

Developing microstructure and multifunctional membranes toward switchable oil-water separation has been highly desired in oily wastewater treatment. Herein, a controllable Janus nozzle was employed to innovatively electrospin natural loofah/poly(vinylidene fluoride) (PVDF) nanofibers with a core-shell structure for gravity-driven water purification. By adjusting flow rates of the PVDF component, a core-shell structure of the composite fibers was obtained caused by the lower viscosity and surface tension of PVDF. In addition, a steady laminar motion of fluids was constructed based on the Reynolds number of flow fields being less than 2300. In order to investigate the formation mechanism of the microstructure, a series of Janus nozzles with different lengths were controlled to study the blending of the two immiscible components. The gravity difference between the two components might cause disturbance of the jet motion, and the PVDF component unidirectionally encapsulated the loofah to form the shell layer. Most importantly, the dry loofah/PVDF membranes could separate oil from an oil-water mixture, while the water-wetted membrane exhibited switchable separation that could separate water from the mixtures because of the hydroxyl groups of the hydrophilic loofah hydrogen-bonding with water molecules and forming a hydration layer. The composite fibers can be applied in water remediation in practice, and the method to produce core-shell structures seems attractive for technological applications involving macroscopic core-shell nano- or microfibers.

Keywords: Janus nozzle; PVDF; core-shell; electrospin; natural loofah.