Graded Image Generation Using Stratified CycleGAN

Med Image Comput Comput Assist Interv. 2020 Oct:12262:760-769. doi: 10.1007/978-3-030-59713-9_73. Epub 2020 Sep 29.

Abstract

In medical imaging, CycleGAN has been used for various image generation tasks, including image synthesis, image denoising, and data augmentation. However, when pushing the technical limits of medical imaging, there can be a substantial variation in image quality. Here, we demonstrate that images generated by CycleGAN can be improved through explicit grading of image quality, which we call stratified CycleGAN. In this image generation task, CycleGAN is used to upgrade the image quality and content of near-infrared fluorescent (NIRF) retinal images. After manual assignment of grading scores to a small subset of the data, semi-supervised learning is applied to propagate grades across the remainder of the data and set up the training data. These scores are embedded into the CycleGAN by adding the grading score as a conditional input to the generator and by integrating an image quality classifier into the discriminator. We validate the efficacy of the proposed stratified CycleGAN by considering pairs of NIRF images at the same retinal regions (imaged with and without correction of optical aberrations achieved using adaptive optics), with the goal being to restore image quality in aberrated images such that cellular-level detail can be obtained. Overall, stratified CycleGAN generated higher quality synthetic images than traditional CycleGAN. Evaluation of cell detection accuracy confirmed that synthetic images were faithful to ground truth images of the same cells. Across this challenging dataset, F1-score improved from 76.9 ± 5.7% when using traditional CycleGAN to 85.0±3.4% when using stratified CycleGAN. These findings demonstrate the potential of stratified Cycle-GAN to improve the synthesis of medical images that exhibit a graded variation in image quality.

Keywords: Adaptive optics; Cell detection; CycleGAN; Data parsing; Image quality; Ophthalmology; Semi-supervised learning.