Cu2O nanoparticles for the degradation of methyl parathion

Beilstein J Nanotechnol. 2020 Oct 12:11:1546-1555. doi: 10.3762/bjnano.11.137. eCollection 2020.

Abstract

Methyl parathion (MP) is one of the most neurotoxic pesticides. An inexpensive and reliable one-step degradation method of MP was achieved through an aqueous suspension of copper(I) oxide nanoparticles (NPs). Three different NPs sizes (16, 29 and 45 nm), determined with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), were synthesized using a modified Benedict's reagent. 1H nuclear magnetic resonance (NMR) results show that the hydrolytic degradation of MP leads to the formation of 4-nitrophenol (4-NPh) as the main product. While the P=S bond of MP becomes P=O, confirmed by 31P NMR. Although Cu2O is a widely known photocatalyst, the degradation of methyl parathion was associated to the surface basicity of Cu2O NPs. Indirect evidence for the basicity of Cu2O NPs was achieved through UV-vis absorption of 4-NPh. Likewise, it was shown that the surface basicity increases with decreasing nanoparticle size. The presence of CuCO3 on the surface of Cu2O, identified using X-ray photoelectron spectroscopy (XPS), passivates its surface and consequently diminishes the degradation of MP.

Keywords: Cu2O nanoparticles; copper(I) oxide (Cu2O); degradation; methyl parathion; surface basicity.

Grants and funding

Juan Rizo would like to thank CONACyT for his PhD fellowship (grant # 240056). David Diaz wants to thank FQ-UNAM for the financial support from “Programa de Apoyo a los Estudios de Posgrado” (PAEP # 5000-9039), and UNAM DGAPA for the financial project “Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica” (PAPIIT # IN121220).