Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies

Sci Total Environ. 2021 Apr 15:765:142721. doi: 10.1016/j.scitotenv.2020.142721. Epub 2020 Oct 6.

Abstract

Reverse Osmosis (RO) is becoming increasingly popular for seawater desalination and wastewater reclamation. However, fouling of the membranes adversely impacts the overall process efficiency and economics. To date, several strategies and approaches have been used in RO plants and investigated at the laboratory-scale for their effectiveness in the control of different fouling types. Amid growing concerns and stringent regulations for the conservation of environment, there is an increasing trend to identify technologies that are effective in fouling mitigation as well as friendly to the environment. The present review elaborates on the different types of environment-friendly technologies for membrane fouling control that are currently being used or under investigation. It commences with a brief introduction to the global water crisis and the potential of membrane-based processes in overcoming this problem. This is followed by a section on membrane fouling that briefly describes the major fouling types and their impact on the membrane performance. Section 3 discusses the predominant fouling control/prevention strategies including feedwater pretreatment, membrane and spacer surface modification and membrane cleaning. The currently employed techniques are discussed together with their drawbacks, with some light being shed on the emerging technologies that have the ability to overcome the current limitations. The penultimate section provides a detailed discussion on a variety of eco-friendly/chemical free techniques investigated to control different fouling types. These include both control and prevention strategies, for example, bioflocculation and electromagnetic fields, as well as remediation techniques such as osmotic backwashing and gas purging. In addition, quorum sensing has been specifically discussed for biofouling remediation. The promising findings from different studies are presented followed by a discussion on their drawbacks and limitations. The review concludes with a need for carrying out fundamental studies to develop better understanding of the eco-friendly processes discussed in the penultimate section and their optimization for possible integration into the RO plants.

Keywords: Eco-friendly techniques; Fouling control; Membrane fouling; Reverse osmosis.

Publication types

  • Review