Depletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal kinase (JNK)

Cell Stress Chaperones. 2021 Jan;26(1):253-264. doi: 10.1007/s12192-020-01174-1. Epub 2020 Oct 29.

Abstract

During the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.

Keywords: ATF4; ER stress; Eukaryotic initiation factor 5B (eIF5B); ISR; JNK; Transcriptome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endoplasmic Reticulum Stress*
  • Enzyme Activation
  • Eukaryotic Initiation Factors / genetics*
  • HEK293 Cells
  • Humans
  • JNK Mitogen-Activated Protein Kinases / genetics
  • JNK Mitogen-Activated Protein Kinases / metabolism*
  • RNA Interference*
  • RNA, Small Interfering / genetics
  • Transcriptome*

Substances

  • Eukaryotic Initiation Factors
  • RNA, Small Interfering
  • eukaryotic initiation factor-5B
  • JNK Mitogen-Activated Protein Kinases