[4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins

J Biol Chem. 2020 Dec 25;295(52):18367-18378. doi: 10.1074/jbc.RA120.015726. Epub 2020 Oct 29.

Abstract

Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coliIn vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.

Keywords: Arabidopsis thaliana; ISCA proteins; NFU proteins; Raman spectroscopy; circular dichroism; iron-sulfur cluster trafficking; iron-sulfur protein; mitochondria; protein-protein interaction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / growth & development
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Chloroplast Proteins / genetics
  • Chloroplast Proteins / metabolism*
  • Iron / metabolism*
  • Iron-Sulfur Proteins / genetics
  • Iron-Sulfur Proteins / metabolism*
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Protein Transport
  • Sulfur / metabolism*

Substances

  • AT4G01940 protein, Arabidopsis
  • Arabidopsis Proteins
  • Chloroplast Proteins
  • Iron-Sulfur Proteins
  • IscA-I protein, Arabidopsis
  • Sulfur
  • Iron