The LINC01260 Functions as a Tumor Suppressor via the miR-562/CYLD/NF-κB Pathway in Non-Small Cell Lung Cancer

Onco Targets Ther. 2020 Oct 20:13:10707-10719. doi: 10.2147/OTT.S253730. eCollection 2020.

Abstract

Purpose: Recently, long noncoding RNAs (lncRNAs) have been identified as novel and potential therapeutic targets in various cancer types. Nonetheless, the levels and biological effects of lncRNAs in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we aimed to identify the effects of lncRNA-LINC01260 throughout the progression of NSCLC and explore the underlying mechanism.

Methods: Quantitative real-time PCR (qRT-PCR) and Western blot were performed to measure LINC01260, miR-562, and CYLD expression and protein levels. Luciferase reporter assay was employed to investigate the relationship between LINC01260 and miR-562, and miR-562 and CYLD, respectively. The viability and migration of cells were evaluated using CCK-8, colony formation, and transwell assays. The effects of LINC01260 were identified through tumorigenesis in vivo. ELISA was performed to detect the activity of NF-κB and p65 expression.

Results: In NSCLC tissues and cell lines, LINC01260 expression was downregulated, which corresponded to a lower survival rate of patients with NSCLC. Knockdown of LINC01260 accelerated the proliferation, colony formation, and migration of NSCLC cells. Moreover, downregulation of LINC01260 inhibited apoptosis of NSCLC cells by regulating the expression of Bcl-2 and Bax proteins in vitro. In vivo, the downregulation of LINC01260 promoted tumor growth. miR-562 was identified as the target gene of LINC01260, which was upregulated in NSCLC tumors. Furthermore, CYLD was identified as the target gene of miR-562. The effects of LINC01260 were exerted by regulating CYLD via sponging miR-562. ELISA confirmed that the upregulation of CYLD inhibited NF-κB activity; however, the co-transfection of sh-LINC01260 partly reversed the inhibition. Additionally, CYLD reduced p65 expression; however, downregulation of LINC01260 slightly increased the expression level.

Conclusion: This study revealed a novel LINC01260/miR-562/CYLD/NF-κB pathway in the pathogenesis of NSCLC and suggested a potential therapeutic target for NSCLC.

Keywords: CYLD; long noncoding RNA; miR-562; non-small cell lung cancer.

Publication types

  • Retracted Publication

Grants and funding

This study was supported by the Natural Science Foundation of Yunnan Province [2017FA039, 2017FE468-214] and National Natural Science Foundation of China [No. 82074189].