Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis

Nat Commun. 2020 Oct 28;11(1):5437. doi: 10.1038/s41467-020-19277-9.

Abstract

Designing electrocatalysts with high-performance for both reduction and oxidation reactions faces severe challenges. Here, the uniform and ultrasmall (~3.4 nm) high-entropy alloys (HEAs) Pt18Ni26Fe15Co14Cu27 nanoparticles are synthesized by a simple low-temperature oil phase strategy at atmospheric pressure. The Pt18Ni26Fe15Co14Cu27/C catalyst exhibits excellent electrocatalytic performance for hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR). The catalyst shows ultrasmall overpotential of 11 mV at the current density of 10 mA cm-2, excellent activity (10.96 A mg-1Pt at -0.07 V vs. reversible hydrogen electrode) and stability in the alkaline medium. Furthermore, it is also the efficient catalyst (15.04 A mg-1Pt) ever reported for MOR in alkaline solution. Periodic DFT calculations confirm the multi-active sites for both HER and MOR on the HEA surface as the key factor for both proton and intermediate transformation. Meanwhile, the construction of HEA surfaces supplies the fast site-to-site electron transfer for both reduction and oxidation processes.